
XML schemas
Explanatory Notes

On this page we find the XML schemas of the lists that are made available by MedMij
Management to Source and Publisher for a range of purposes. The XML schemas are an
implementation of the logical models of the lists in XML syntax and accordingly fulfil the role of
technical model. XML fits the hierarchical structuring that has already been deployed in the
logical models. In addition, XML schemas and XML files are serial in nature. In other words, the
translation from the logical model requires the classes to be placed behind each other without
allowing their diagrammatical organisation in the logical model to disappear. A composition
relationship in the logical model becomes a nesting in the XML schema. XML tags are used in
order to be able to mutually separate the model elements that have been placed behind each
other, both in the XML schema and in the XML instance, and to provide the elements with meta
information.

Just like they do on the conceptual level of the meta model and on the logical level of the
logical model, invariants appear on the technical level too. XML is even able to check some of
these invariants automatically. In such XML validation, it is checked whether a certain XML file
complies with the structure of a certain XML schema. The MedMij Framework utilises this
feature too by requiring the recipient of the four lists to carry out such a validation. The XML
schemas for this are made available as part of the MedMij Framework. This validation provides
additional certainty about the correctness of the distributed lists and in this way helps to
improve the reliability of the MedMij network’s operation.

All the same, there are still various ways to translate the lists’ logical model into their XML
schemas. In the MedMij Framework, the following considerations have been used in this
regard:

• All types and elements that are used for one of the lists are defined in the XML schema
of the list in question. In other words, no use has been made of a basic common sheet.
In this way, the dependency between the XML schemas is limited and it becomes easier
to modify one of the schemas without having to modify the other schemas too.
However, the definitions must continue to fit the meta model and the logical model; a
modification in one of these models makes it necessary to modify all XML schemas that
are affected by this change.

• There are four technical components that are associated with the lists’ logical model.
The highest class of each component becomes the root element of the relevant XML
schema. The attributes of the abstract class above it (MedMijManagementlist) are
distributed across the technical models of these four. In other words, for each list there
is a separate XML schema. This means that the homonymy of Dataservice is no longer a
problem and that the suffixes _CPL and _DSNL can be omitted from the names.

• Just like in the step from the meta model to the logical models, the granularity of the
classes remains the same: no classes are taken together to make a sheet more compact.

• Each of the logical classes, apart from the class that serves as the ‘root’, are defined
individually as complexType in the XML schema, so that they can be reused within the
XML schema.

• Each of the basic classes is defined individually as simpleType in XML schema, so that they
can be reused within the XML schema.

• All classes and attributes from the logical model are modelled as elements in the XML
schema. This enables there to be a clear translation of the logical model; no distinction
between elements and attributes needs to be applied. Elements provide more options
than attributes do, which is why (as a generic choice) they are preferred.

• Where reference is made in the logical model to ‘identifiers’, a 'uniqueness constraint'
has been included in the XML schema.

Sheets

List Filename Release Version of file

Care Providers List MedMij_Careproviderslist.xsd 2 5

Whitelist MedMij_Whitelist.xsd 2 9

OAuthclientlist MedMij_OAuthclientlist.xsd 2 5

Data Service Names List MedMij_Dataservicenameslist.xsd 1 7

Only the above-mentioned files, with the stated release and version number, may be used in
this release of the MedMij Framework.

Sample files (XML)

A sample file of each list is available. This file is not part of the official specifications of the
MedMij Framework.

List Filename
Version of

sample
file

Belongs to XML
schema of the list

with release
number

Care Providers
List MedMij_Careproviderslist_example.xml 2 2

Whitelist MedMij_Whitelist_example.xml 5 2

OAuthclientlist MedMij_OAuthclientlist_example.xml 2 2

Data Service
Names List MedMij_Dataservicenameslist_example.xml 2 1

Explanatory Notes

Time aspect

The meta model and the logical models, with their invariants, work “over time”. They describe
how the classes are related at each moment. However, the XML files for the lists are specific
snapshots in time of the classes’ instances. This is why a time element must be added to those
lists that are generated at different moments, in order to be able to distinguish between them
and in order to be able to retrospectively establish a list’s validity duration.

• Each XML file has an indication of the version it is. The combination of a Serial number
and a Timestamp is used for this. This fulfils three information requirements:

o When two lists (of the same type) with successive Serial numbers are available then
the validity duration of the older list can be established. This helps in the
interpretation of audit logs and in error tracking.

o Lists can be uniquely identified. This can be done using Serial number or Timestamp,
whereby human users often find the Serial number to be the most intuitive to use.

o It can be verified for each list as to when the last change was made. This will
usually be a 'functional' change, not an error recovery. By comparing successive
versions, this can be used to deduce when the current list was most recently
amended; this can be useful when assessing the effects of changes or when error
tracking.

• Timestamp consists of Date, Time and Timezone indication, based on xs:dateTime type.
Opting for a native XML datatype simplifies the implementation. However, there is a
restriction on the element, which forces a Timezone indication to always be provided.

Release Management

The filenames of the XML schemas and XML sample files have been chosen such that they do
not change if the content of the XML schema changes. This makes it easier to implement
changes. It is customary to include meta-information not in the filename but in the XML files
themselves (especially in the header). This is why it is not necessary to use - in addition to the
information in the file - the filename for version indication too.

Each of the XML schemas has its own release numbering. This enables them to be modified
independently of each other. This prevents implementation being an unnecessary burden when
a change is made. The release number is a whole number, for reasons of simplicity. Always - but
only if - a XML schema is changed is the release number increased by one.

The XML schemas are an integral part of the framework. As a result, a change in the XML
schemas leads to a new release of the Framework. However, in the reverse situation it does not
need to be the case that a change in the other agreements within the Framework makes it
necessary to change the XML schema.

Since a change in a XML schema quickly leads to incompatibility with other versions (note that
XML files that are based on different versions of the XML schema will not be validated by the
'other' XML schema), it has been decided to include the release number in the indication of the
namespace. This is why a XML file’s reference to the namespace also includes the release
number. In this way it is ensured that XML files are not validated using a wrong version of the
XML schema.

The XML schemas and the sample XML files are also given a version number. The version
number is a whole number that is increased by one upon each change in the file. Version
numbering is used to distinguish between file versions during the development process. The
number is also present in production versions; this makes it unnecessary to modify the XML
products when there is a status change to a release of the MedMij Framework, even if their
content has not changed. The version number is included in the file as a comment, because it
does not need to be machine-readable and because this creates a clear system for the XML
schemas and the XML sample files. The comment has the form: <!--File version: [version number]-->
and can be found on the second line of a file. For reasons of simplicity and clarity, the version
numbering is independent of the release numbering for the XML schemas.

Namespaces

An URL is used to indicate namespaces. This is the easiest option, because this - unlike with an
URN - does not require any namespace registration with IANA. The namespace URL has the
following structure: xmlns://afsprakenstelsel.medmij.nl/[nameList]/release[releasenumber] .

• A namespace URL uses xmlns:// as the sheet indication. This makes it clear that this is
merely an identification and that the URL is not intended to be used for dereferencing
(for example to download the XML schema).

• The domain afsprakenstelsel.medmij.nl is a unique hostname on the Internet. Using it
provides both sufficient recognisablity and uniqueness

• The nameList has one of the following values: Whitelist, OAuthclientlist, Care Providers List or
Data Service Names List.

• The indication release is added to make it easier for people to read and hence to improve
clarity.

Where the meta model has not defined any names, for reasons of consistency and elegance we
opt to use lowercase for the URL’s structure. The following is used here: elementFormDefault =
"qualified". This makes the XML schemas easier to read, because no prefixes are needed to
define the elements and because it does not impair any functionality. The prefixes for the
namespaces are kept as short as possible in order to make the XML schemas easier to read, and

always consists of three letters and are entirely in lowercase. The following table shows which
prefix is used for which component (list).

Component Prefix

Data Service Names List dnl

OAuthclientlist ocl

Whitelist whl

Care Providers List cpl

Syntactic options

The XML schemas are based on XML 1.0 and XML Schema 1.0 (built up from specifications
relating to structure and data types). These versions provide sufficient functionality and enjoy
widespread implementation and support.

The filename of a XML schema has the structure MedMij_[nameList].xsd. The variable nameList
relates to one of the following values: Whitelist, OAuthclientlist, Care Providers List or Data Service Names
List.

The XML schemas contain the XML Declaration <?xml version="1.0" encoding="UTF-8"?>. The
presence of a declaration is recommended by XML 1.0. When using UTF-8, the encoding is
optional. However, the encoding is explicit because it prevents potential uncertainty about the
intention of or the correct compliance with the specifications. No use is made of the pseudo-
attribute standalone, because XML schemas are used instead of DTDs.

To make them easier to read, the XML schemas are pretty-printed; readability is further
improved by using line breaks and indents. Furthermore, each XML schema uses a standard
sequence in its structure:

• The root element, preceded by the comment text <!--Rootelement-->.
• The definition of the logical classes, preceded by the comment text <!–Logical classes-->.
• The definition of the basic classes, preceded by the comment text <!--Basic classes-->.

There is leeway within them as to the order in which the classes are defined.

The uniqueness constraints use <xs:unique>. The (mandatory or other) name of uniqueness
constraints in XML is built up in line with Unique_[nameClass]. In this way, the characteristic of the
attribute Hostname of the class MedMijNode from the logical model to which the whitelist
belongs translates into a uniqueness constraint with the name Unique_MedMijNode. It is sufficient
to have the name of the class (without the hierarchical context), because class names based on
the logical model are unique. The name of the attribute does not need to be quoted. The

attributes that between them form the identity of a class’s instance are depicted in the logical
model . Within <xs:unique>, only <xs:selector> is used for the XPath expression; <xs:field> is included
(in accordance with the XML specification) but left empty (has the entry . (full stop)). This is an
easier option than having to provide a criterion for the splitting of the XPath expression
between <xs:selector> and <xs:field>.

Use is made of <xs:sequence> within all complexTypes, with <xs:all> not being used here, because
in this way elements can be used more than once. This is a characteristic that is used a great
deal; it is inherent to the nature of the lists and is relevant to many of the composition
relationships (who do not have any maximum scope for the compilation).

The XML schemas do not contain a Byte Order Mark. According to XML 1.0, using a Byte Order
mark is optional for UTF-8. RFC 3629, chapter 6, argues that the Byte Order Mark must be
prohibited where UTF-8 is made mandatory.

Basic classes
The definition of the basic classes in the logical model is translated into simpleTypes in the XML
schema, which builds on a native XML data type and which sometimes attaches additional
restrictions to it.

Basic class Basis (XML
data type) minLength maxLength pattern

Backchanneluri xs:string
https://(([a-z0-9])([a-z0-9-
])*(\.))+([a-z0-9])([a-z0-9-
])*([a-z0-
9])(:(\d){1,5})?(/[^?#/]+)*

DateTime xs:dateTime .{20,}

Frontchanneluri xs:string
https://(([a-z0-9])([a-z0-9-
])*(\.))+([a-z0-9])([a-z0-9-
])*([a-z0-9])?(/[^?#/]+)*

DataserviceId xs:string 1 30

Hostname xs:string
(([a-z0-9])([a-z0-9-
])*(\.))+([a-z0-9])([a-z0-9-
])*([a-z0-9])

OAuthclientOrganisationname xs:string 3 50

Positive number xs:positiveInteger

System role code xs:string 1 30

Depiction name xs:string 3 50

Care Provider Name xs:string 10 57 ([a-z])+@medmij

