
Logical models
Explanatory Notes

There is only a single meta model but there are multiple logical models. Logical models prepare
the implementation of certain components of the meta model. The current version of the
MedMij Framework has three logical models. Each of them is required for one or more specific
implementation components in the MedMij Framework. This relates to the following
components:

• the four lists published by MedMij Registration: Data Service Names
List, OAuthclientlist, Whitelist and Care Providers List;

• the Catalogue of Data Servicesto be published in the MedMij Framework;
• the (Hostname of the) MedMijSystemNodeto be published in the MedMij Framework.

The four lists have been combined into a single logical model, under the class
MedMijManagementlist, because they share two characteristics: a timestamp and a serial
number.

Logical models obey the meta model but specify it. In the step from meta model to logical
mode, (logical and other) classes, invariants and basic classes may be added. However, the
logical models primarily build on the meta model by using its classes and attributes. In that
case, logical classes, values and basic classes accordingly have corresponding classes in the
meta model. The similarities are shown below with the logical model named in a table. Where
the table for a certain logical class, value or basic class does not name the similarity with the
meta model, it means that this is new for the logical level.

Logical classes have fewer or more attributes than the corresponding classes in the meta
model. Where there are fewer, this means that the omitted attributes do not need to be
included in the component to be implemented, for example of a list to be published. Where
there are more, these attributes are passed down from a class in the meta model that the
corresponding class in that meta model was existence-dependent on. In the meta model, the
last-named class was accordingly accessible for the existence-dependent class but it is no longer
present in the specific logical model and thus is no longer accessible either. This means that if
the relevant class in the logical model has not taken over the attribute then this will be lost.

Where a invariant from the meta model fits within the scope of the specific logical model, this
also appears as an invariant with the logical model, although the formulation will have been
adapted to the organisation and naming used in the logical model. In addition, new invariants
too may appear on the logical level. Most of them are inheritances: in the step from the meta
model to a logical mode, links between classes become broken. If these links are important
after all in the logical model then attributes from the meta model are bequeathed from a
certain class in the meta model to a lower class, for which a pendant does actually occur in the
logical model. Here, "lower class" refers to the fact that this is existence-dependent on the
other (higher) class. Such an inheritance invariant is written with a ←. In front of that arrow we
see the inheriting attribute of the logical class, and behind it we see the path in the meta model
to the bequeathing class.

Where applicable, the basic classes too from the meta model are taken over by the logical
model. There is a single place in the logical model where new basic classes appear as well.

The logical models have a structure that is more oriented towards implementation than the
meta model is. This meta model is based on association classes and existence-dependency,
whereas the logical models are more hierarchical in nature. Hierarchy is a constriction of
associative existence-dependency but is a better fit with many types of standard

implementation technology, this certainly including XML, in which the four lists are
implemented. This constriction does however mean that the logical models are less long-lasting
and less expandable than the meta model; something that for the meta model is a simple
expansion can correspond to a substantial modification of the logical models. This is the price
you pay for hierarchy.

When translating the associativity of the meta model into the hierarchy of the logical models, a
number of rules of thumb have been applied:

• The top of the hierarchy of a logical model is determined by the scope of the
implementation component. The Care Providers List, for example, lists first of all the
Care Providers. Starting from that "logical centre", the hierarchy descends from top to
bottom, without exceeding the scope of the implementation. In the logical model, the
step towards the bottom in the hierarchy typically takes the form of a ‘uses’ relationship
(the dotted-line arrow).

• En route, a composition hierarchy is built, and in each step a selection is made from the
attributes available in the meta model, on the basis of the scope of the implementation
component. In doing so, logical classes are not combined into a granular class, not even
if no attribute at all is left over. The class granularity of the logical model is accordingly
comparable with that of the meta model.

• In addition, as described above, attributes in the meta model that threaten to fall
outside its scope but that are actually needed are bequeathed to within the scope.
Where this is done, the inheritance is specified in the list of logical invariants.

• Lower classes in the uses hierarchy lie completely within the logical scope of the higher
one. In this way, a hierarchy also creates closed "name spaces". This means that their
naming is simpler and shorter than in the meta model, where it is precisely the case that
all contexts are open-ended. In the logical models, therefore, the names of the classes
do not become meaningful until higher classes are considered with them. However, this
does simplify the implementation. In a separate table for each logical model, it is
ensured that these name changes do not cause the link with the meta model to become
lost.

• In a single instance, the previous point has the consequence that there is a risk that a
homonym could arise within a single logical model (namely Data Service in the lists’
logical model). In that case, the names will be expanded so that their hierarchical
context becomes visible (namely to Dataservice_DSNL and Dataservice_CPL).

Note that the uses hierarchy places the existence-dependent relationship upside down. In the
corresponding classes in the meta model, in the uses relationship the used class is placed above
the using class, whereas the reverse is true in the logical models. This characterises the decisive
difference between the meta model’s conceptual way of thinking and the logical models’ build-
oriented way of thinking. When it comes to making the MedMij Framework both consistent and
long-lasting, it makes sense to place the meta model centre-stage in respect of model
management and then to keep the logical models consistent with it. In this way, the meta
model also ensures that the various logical models remain consistent in the long term too. In

fact, the trustworthiness and interoperability that the MedMij Framework has to deliver is
dependent on this consistency.

Lists

Logical model

Logical invariants

Relates to
instances of

logical class ...
Invariant Compone

nt
Explanatory

Notes Nature Origin

AuthorisationE
ndpoint

For each AuthorisationEndpoint
a it is true that: a .
AuthorisationEndpoint uri ←
combination of a . MedMijNode.
ParticipantNode. Node. Hostname
and a.AuthorisationEndpointpath,
in accordance with the addressing
responsibilities on the page Data
and performance in UCI Compile
and UCI Share

Care
Providers
List

See the
page Data
and
performanc
e in UCI
Compile
and UCI
Share.

inherita
nce

logical
model

Dataservice_C
PL

For each Dataservice_CPL g with
its corresponding
CareproviderDataservice z it is
true that:
g.DataserviceId ← z.Dataservice.D
ataserviceId

Care
Providers
List

In this way,
the Care
Providers
List inherits
the Dataser
viceIds of
the
Catalogue.

inherita
nce

logical
model

Data Service
Names List

There is precisely one instance of
this.

Data
Service
Names
List

This is a
loner in the
model.

numeric
al
relation
ship

logical
model

MedMijNode

For each MedMijNode m it is true
that:
m.Hostname = m.ParticipantNode
.Node.Hostname

Whitelist

In this way,
the
MedMijNod
e inherits
the
Hostname
of the
Node that it
is.

inherita
nce

logical
model

MedMijNode

The hostname of a MedMijNode
contains a domain name that is a
fully-qualified domain name, in
accordance with RFC3696, section
2.

Whitelist

This is a
measure to
combat
risk 4.4.1.4 f
rom RFC
6819.

local
depend
ency

meta
model
(with
Node)

Relates to
instances of

logical class ...
Invariant Compone

nt
Explanatory

Notes Nature Origin

OAuthclient

For each OAuthclient o:
o.OAuthclientOrganisationname
complies with the OAuthclient
names policy.

Applicati
on

See the
OAuthclient
names
policy.

local
depend
ency

meta
model
(with
OAuthcl
ient)

OAuthclient
For each OAuthclient o it is true
that: o.Hostname ←
o.MedMijNode .Hostname.

OAuthclie
ntlist

In this way,
the
OAuthclientl
ist inherits
the
Hostnames
of the
Nodes.

inherita
nce

logical
model

OAuthclientlist There is precisely one instance of
this.

OAuthclie
ntlist

This is a
loner in the
model.

numeric
al
relation
ship

logical
model

ResourceEndp
oint

For each ResourceEndpoint r it is
true that:
r.ResourceEndpointuri ←
combination of
r.MedMijNode.ParticipantNode.N
ode.Hostname,
r.ResourceEndpointport and
r.ResourceEndpointpath, in
accordance with the addressing
responsibilities on the page Data
and performance in UCI Compile
and UCI Share .

Care
Providers
List

See the
page Data
and
performanc
e in UCI
Compile
and UCI
Share.

inherita
nce

logical
model

Relates to
instances of

logical class ...
Invariant Compone

nt
Explanatory

Notes Nature Origin

System Role

For each System Role s with its
corresponding
CareproviderDataserviceSystemro
le z it is true that:
s.Systemrolecode
← z.Systemrole.Systemrolecode

Care
Providers
List

In this way,
the Care
Providers
List inherits
the
Systemrolec
odes of the
Register of
Information
Standards.

inherita
nce

logical
model

TokenEndpoint

For each TokenEndpoint t it is true
that: t.TokenEndpointuri ←
combination of
t.MedMijNode.ParticipantNode.N
ode.Hostname,
t.TokenEndpointport and
t.TokenEndpointpath, in
accordance with the addressing
responsibilities on the page Data
and performance in UCI Compile
and UCI Share.

Care
Providers
List

See the
page Data
and
performanc
e in UCI
Compile
and UCI
Share.

local
depend
ency

logical
model

Whitelist There is precisely one instance of
this. Whitelist

This is a
loner in the
model.

numeric
al
relation
ship

logical
model

Care Providers
List

There is precisely one instance of
this.

Care
Providers
List

This is a
loner in the
model.

numeric
al
relation
ship

logical
model

Logical basic classes

Basic class Definition Origin

Backchanneluri See the addressing responsibilities on the page Data and performance in UCI Compile and UCI Share. The domain name is a fully-qualified domain name, in
accordance with RFC3696, section 2.

logical
model

Basic class Definition Origin

DateTime In accordance with the type xs:dateTime , as specified in XML schema 1.0 and including a timezone indication. logical
model

Frontchanneluri See the addressing responsibilities on the page Data and performance in UCI Compile and UCI Share. The domain name is a fully-qualified domain name, in
accordance with RFC3696, section 2.

logical
model

DataserviceId String of at least one, and a maximum of 30, character(s). meta
model

Hostname See the addressing responsibilities on the page Data and performance in UCI Compile and UCI Share. meta
model

OAuthclientOrganisationname In accordance with applicable Oauthclient names policy. meta
model

Positivenumber A whole number that is not equal to 0. logical
model

Systemrolecode String of at least one, and a maximum of 30, character(s). meta
model

Depictionname String of at least three, and a maximum of 50, character(s). meta
model

Careprovidername In accordance with applicable Care Providersnamespolicy. meta
model

Link with meta model

Class in logical model Origin class in meta model

AuthorisationEndpoint AuthorisationEndpoint

Dataservice_DSNL Data Service

Dataservice_CPL CareproviderDataservice

MedMijNode MedMijNode

OAuthclient OAuthclient

ResourceEndpoint ResourceEndpoint

System Role CareproviderDataserviceSystemrole

TokenEndpoint TokenEndpoint

Careprovider Careprovider

Catalogue

Logical model

Logical invariants

Relates to
instances
of class ...

Invariant Component Explanatory
Notes Nature Origin

Usecase

For each Usecase u it is true
that: u.Depictionname =
"Compile" OR
u.Depictionname = "Share"

Catalogue

This links the
names of the
subclasses to
the depiction
names.

local
dependency

meta
model
(with
Usecase)

Logical basic classes

Basic class Definition Origin

Date In accordance with the type xs:date, as specified in XML schema
1.0.

meta
model

DataserviceId String of at least one, and a maximum of 30, character(s). meta
model

Dataservicename String of at least three, and a maximum of 50, character(s). meta
model

Systemrolecode String of at least one, and a maximum of 30, character(s). meta
model

Basic class Definition Origin

Depictionname String of at least three, and a maximum of 50, character(s). meta
model

Link with meta model

Class/value in logical model Origin class in meta model

Data Service Data Service

Usecase Usecase , CompileUsecase and ShareUsecase

Explanatory Notes

The class Usecase is an abstract class in the meta model. However, concrete classes are needed
in the logical model, namely in the composition hierarchy. In the context of the Catalogue, we
are not interested here in the whole semantics of the conceptual classes CompileUsecase and
ShareUsecase but only in their respective instances, with the Depictionname that they receive
from the abstract class Usecase, by means of an invariant. In this logical model, this is why we
use a concrete class Usecase that instantiates to these two.

MedMijSystemNode

Logical model

Logical invariants

Relates to
instances of

class ...
Invariant Component Explanatory

Notes Nature

Relates to
instances of

class ...
Invariant Component Explanatory

Notes Nature

MedMijSystemN
ode

For the MedMijSystemNode
m it is true that:
m.Hostname ← m.Node.Hos
tname

MedMijSystemN
ode

In this way, the
MedMijSystemN
ode, inherits -
from the
Node that it is -
the Hostname.

inheritan
ce

Logical basic classes

Basic
class Definition Origin

Hostname See the addressing responsibilities on the page Data and performance
in UCI Compile and UCI Share.

meta
model

Link with meta model

Class in logical model Origin class in meta model

MedMijSystemNode MedMijSystemNode

